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Abstract—Modern large-scale heterogeneous computers in-
corporating GPUs offer impressive processing capabilities. It
is desirable to fully utilize such systems for serving multiple
users concurrently to visualize large data at interactive rates.
However, as the disparity between data transfer speed and com-
pute speed continues to increase in heterogeneous systems, data
locality becomes crucial for performance. We present a new job
scheduling design to support multi-user exploration of large
data in a heterogeneous computing environment, achieving
near optimal data locality and minimizing I/O overhead. The
targeted application is a parallel visualization system which
allows multiple users to render large volumetric data sets in
both interactive mode and batch mode. We present a cost
model to assess the performance of parallel volume rendering
and quantify the efficiency of job scheduling. We have tested
our job scheduling scheme on two heterogeneous systems with
different configurations. The largest test volume data used in
our study has over two billion grid points. The timing results
demonstrate that our design effectively improves data locality
for complex multi-user job scheduling problems, leading to
better overall performance of the service.

I. INTRODUCTION

Leveraging the power of large cluster systems, such as the
ones enabled by cloud computing, users can now process
and analyze their large data in a scalable and cost-effective
manner. The success of large-scale systems is evidenced
by the steadily increasing deployment of cloud computing
for commercial web-based applications [1] and for scientific
applications [2]. To further increase the computing capacity
and reduce the power consumption of large systems, one of
the most recent trends is to employ heterogeneous processing
elements, such as GPUs, to work collaboratively with CPUs.
For instance, Cluster GPU Instances have been recently
introduced for Amazon’s EC2 to deliver the heterogeneous
processing power in the cloud [3]. This new system achieves
a considerable performance improvement compared to the
original cloud configuration [4].

Harnessing the power of these heterogeneous and spe-
cialized co-processors makes it possible to run certain
conventional compute-intensive tasks at interactive rates.
Consequently, apart from traditional batch jobs such as web
indexing, the requirement to support interactive jobs has
recently emerged for these large systems. In this use case,
multiple users are allowed to share computing resources and
run processing tasks possibly interactively over a set of large
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data. Such centralized heterogeneous facilities should enable
users to accomplish their tasks with a short turnaround time,
while fully utilizing the large-scale systems.

To share a large system between users with high effi-
ciency is not a trivial task. Although many sophisticated job
scheduling techniques have been developed to improve effi-
ciency of systems with multi-user support, most of current
approaches are not designed for running on large hetero-
geneous systems. Compared to conventional homogeneous
systems, heterogeneous systems are characterized with deep
memory hierarchies and high levels of concurrency, thus
incurring an increased disparity between data transfer speed
and compute speed. This makes data locality become more
crucial for performance. We present efficient job scheduling
strategies for placing computation closer to its input data.
We select parallel visualization, specifically parallel volume
rendering, as our target application. It is possible to achieve
interactive framerates to render large volumetric data by
exploiting multiple GPUs. This capability is very much
desired by many scientific applications. Our work will thus
benefit a wide class of application areas beyond what is
demonstrated in this paper.

Much research has gone into the issue of improving
interactivity, usability, and load balance of parallel volume
rendering techniques. However, most conventional methods
ignore data locality problem that occurs in the process of
fetching data from disks to memory, particularly main mem-
ory and video memory, before carrying out the rendering.
In a single user scenario, this one-time initialization can
be omitted since a user usually explores one dataset at a
time during the whole session. However, the situation can
become more complex in a multi-user scenario: some users
may simultaneously explore different datasets in interactive
mode, and some users may submit batch rendering jobs for
producing animation or visualizing time-varying data. Thus
the system might be overloaded with a significant number
of I/O and memory swapping operations. The data fetching
step cannot be neglected since it is no longer a one-time
operation, and its overhead can severely impact the overall
performance on both the system and user sides.

In this work, we have developed an efficient job schedul-
ing strategy for a parallel visualization server with multi-
user support. While the job scheduling problem has been
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extensively studied for supporting multi-tasking and multi-
user systems, to the best of our knowledge, no work has
been conducted to apply adequate scheduling algorithms
for a parallel volume rendering service for supporting both
interactive and batch modes.

We also present a cost model to assess the computa-
tional costs associated with the parallel volume rendering
approach. With this model, the rendering cost in the visu-
alization system can be quantified and predicted. We have
designed a heuristic approach to achieve optimal scheduling
of rendering jobs, where data locality and load balance are
considered. We compare our method with various existing
scheduling schemes in our experiments. Our method outper-
forms other methods and successfully optimizes visualiza-
tion services that can serve multiple users to increase ma-
chine utilization while maintaining satisfactory responsive
rates. The experimental study on our design demonstrates
convincingly the plausibility of shared visualization services,
and also suggest a few directions for further research.

II. BACKGROUND AND RELATED WORK
A. Parallel Volume Rendering

Volume rendering is a well-established technique used
to visualize volumetric datasets. Among various volume
rendering methods, the ray-casting volume rendering [5]
is the most popular method thanks to its effectiveness in
producing high quality images where the internal structures
of complicated volume data can be revealed. For each screen
pixel on the plane, a single ray is traversed from the eye
into the volume. During ray casting, a transfer function that
maps scalar values to optical properties, including color and
opacity, is applied at each sample point. These colors and
opacities are then accumulated along a ray to composite a fi-
nal color on the screen. The ray-casting volume rendering is
computationally intensive since it requires the interpolation
and shading calculations for every sample point along the
ray. Kriiger and Wetermann [6] proposed GPU-accelerated
ray-casting rendering methods. By storing the volumetric
data in the video memory, and utilizing GPU hardware in-
cluding vertex and fragment shaders, these renderers achieve
high quality rendering quality at interactive rates.

For large volumetric datasets where the visualization
cannot be computed on a single machine, parallel volume
rendering methods provide feasible solutions by distributing
both data and rendering calculations to multiple compute
nodes. Among the three basic parallel rendering approaches,
including sort-first, sort-middle, and sort-last, defined by
Molnar et al. [7], sort-last parallel rendering has been
widely used by visualization researchers [8]-[11] due to its
simple task decomposition for achieving load balancing. In
the sort-last situation, the data is split between the nodes,
and each node renders its own portion of the data. Then,
image compositing takes the depth information into account
to form a final image from each node’s rendering. The
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image compositing stage in sort-last approaches demands
interprocessor communication, which can become very ex-
pensive because of the potentially large amount of messages
exchanged. Therefore, image compositing could become a
bottleneck that affects the efficiency of the sort-last parallel
rendering algorithms. Much research has gone into the
issue of improving the performance of image compositing.
Ma et al. [12] proposed the binary swap algorithm which
uses a hierarchical communication scheme to improve the
performance on large scale workloads while still involving
all the processors in the compositing. Yu et al. [13] has
extended the binary swap algorithm by exploiting a 2-3
swap mechanism which allows using an arbitrary number
of compositing processors.

One important application of parallel volume rendering
is remote visualization. Remote parallel rendering servers
utilize remote computational resources to visualize full-
resolution datasets. Ma and Camp [14] demonstrated several
latency hiding techniques including overlapped I/O, render-
ing, compression and transmission in the context of remote
visualization. The proposed system achieves near-interactive
remote visualization of time-varying data on parallel com-
puters. Remote volume visualization has received much
attention due to the rapidly increasing size of simulation data
generated by high performance computers. For interactive
exploration of large datasets, Freitag and Loy [15] developed
theoretical performance models for three different remote
visualization strategies, including image-based rendering,
parallel visualization servers, and subsampling techniques,
and they also examined the performance characteristics of
each strategy. Toyama et al. [16] introduced a resource man-
agement system for volume visualization which efficiently
handles some issues due to high-cost data transfer. Gao et
al. [17] proposed an adaptive data management scheme for
large data visualization which emphasizes data sharing and
access across the network.

B. Job Scheduling

The job scheduling problem has been shown to be NP-
complete [18], and it has been extensively studied in the
literature. In general, the job scheduling problem can be
classified into two categories, static scheduling and dy-
namic scheduling. In static scheduling, the characteristics
of parallel tasks (such as estimated execution time, data
dependencies, and communication pattens) are known a
priori before run time. A static scheduling problem typically
can be modeled as direct acyclic graph, where the weight of
a node represents the execution time of a task and the weight
of an edge represents the dependency between tasks. Various
heuristic approaches, such as clustering algorithms [19],
list-scheduling algorithms [20], and guided random search
methods [21], [22], have been proposed to find near optimal
solutions with polynomial-time complexity.

In dynamic scheduling, a priori knowledge of parallel



tasks is typically not assumed before run time, and a schedul-
ing solution is made on-the-fly according to the current
state of systems. The main goal of dynamic scheduling
algorithms is to balance the workload across the processors
and thus to minimize the job completion time. In general,
dynamic scheduling algorithms first gather the state infor-
mation of each processor and then transfer the workload
from heavily loaded processors to lightly loaded ones. Such
load balancing can be classified as centralized [23] or
decentralized [24]. In centralized load balancing, a dedi-
cated processor is responsible for gathering system load
information and assigning tasks to processors, showing a
typical master-slave structure. In decentralized load balanc-
ing, each processor exchanges workload information with
other processors, and tasks are transferred between arbitrary
processors in a collaborative fashion. Since the scheduling
is performed at run time, an essential property of a dynamic
scheduling algorithm is to lower the scheduling overhead
and make it only a small portion of the overall job comple-
tion time. Many studies have shown that simple heuristics,
such as First-Come First-Served (FCFS), Round Robin (RR),
and Shorted First (SF), can achieve good performance in
practice [25]. A recent research direction focuses on the
fairness between users in large-scale clusters [26], in which
a Fair Sharing (FS) scheduler aims to equally allocate
computational resources to the jobs over time.

In parallel visualization community, researchers have pro-
posed various methods to balance workload according to the
properties of underlying visualization algorithms. Strengert
et al. [27] partitioned the data into volume bricks in object
space to achieve static load balancing. Wang et al. [28] par-
titioned and distributed volumetric data along a hierarchical
space-filling curve, and achieved well-balanced rendering
workload at run time. Marchesin et al. [29] proposed a
method that split data into bricks of equal size and dynam-
ically transferred the bricks among processors according to
an approximation of the rendering cost. However, these prior
methods were designed to facilitate particular visualization
algorithms for single-user scenarios, and their approaches
cannot be directly used for multi-user support.

III. OVERVIEW

Compared with transitional job scheduling, scheduling
parallel visualization in heterogeneous systems has the fol-
lowing characteristics. First, scheduling calculations must
not incur excessive costs. A parallel visualization job is
corresponding to a user interaction, and a large amount of
jobs can be generated simultaneously and instantaneously
from multiple users during their exploring processes. To
ensure users’ interactive experiences, scheduling algorithms
must assign and distribute many tasks at a speed comparable
to the processing speed of GPUs.

Second, given the disparity between the I/O cost and the
rendering cost, scheduling algorithms must place jobs close
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Figure 1. An overview of our system, where four rendering nodes are

included for illustrative purposes.

to their data so as to minimize I/O overhead. Although
there are usually no dependencies assumed between different
rendering jobs, a series of interactions from the same user
typically operate on the same data, thus exhibiting strong
temporal coherence of data usage to guide job scheduling.

Third, scheduling algorithms need to exploit the temporal
coherence of user interactions to improve job scheduling
performance. A parallel visualization job can be dynamically
generated, and its start time is difficult to predict. However, it
is possible to approximate certain characteristics, such as the
execution time, of a job from its precursors, which allows us
to design an algorithm to combine the advantages of static
scheduling and dynamic scheduling.

A. System Overview

Based on our observations, we design and implement our
visualization system in a master-slave fashion as shown in
Fig. 1. The head node is responsible for communicating with
users, such as receiving rendering requests and returning
final images to users. The head node is also in charge of
managing the compute nodes for the rendering and image
compositing operations. In general, the head node has two
threads, a listening thread and a dispatching thread. When
users send rendering requests to the head node, the listening
thread converts the incoming requests to rendering jobs,
and pushes these jobs to a job queue. At the same time,
the dispatching thread pops up rendering jobs in turn from
the queue. Based on a data decomposition policy and a job
scheduling scheme, the dispatching thread decomposes each
job into a set of independent tasks associating with data
chunks, and distributes those rendering tasks to a group of
rendering nodes for the rendering process. A rendering node
processes the incoming rendering tasks on a First-In-First-
Out basis. Each rendering node performs asynchronized
parallel rendering to generate subimages. Then, a collec-
tive image composition operation is performed among the
rendering group to generate a final image. Finally, the head
node receives the final image and returns it to the user.

B. Parallel Volume Rendering Pipeline

The parallel volume rendering pipeline has three main
steps, data I/O, rendering, and image compositing. The data
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Figure 2. A typical visualization pipeline involves data I/O, rendering,
and image compositing. I/O for a parallel system can be local disks or a
network file server. Before the actual rendering calculation is carried out,
data need to be prepared from I/O and uploaded to the GPU memory, and
this initialization process usually takes several seconds and thus becomes
a bottleneck in the rendering pipeline.

I/O includes data loading from the disk to the main memory,
and uploading from the main memory to the video memory.
Before the rendering calculation, if the associating data
chunks are not loaded, the rendering nodes will make an
initialization step to fetch the data chunks from the file
system into the memory. Depending on the data size, the
time for this step can be of the order of tens of seconds,
whereas ray-casting and image compositing usually take
a few miniseconds as shown in Fig. 2. In a multi-user
parallel visualization system, a large amount of jobs can
come from multiple users’ interactions and other batch
rendering requests, and thus the system can be overloaded.
Without a proper job scheduling mechanism, the system
may repeatedly perform I/O operations which can seriously
impact the overall rendering performance. Hence, we focus
on the cache locality in the main memory and develop an
efficient job scheduler which minimizes the occurrences of
I/O operations among all the rendering nodes, and maximize
the system utilization to achieve well-balanced workload.

C. Data Decomposition

Given a data decomposition policy, a rendering job can
be divided into a set of independent tasks, each with an
associated data chunk. Here we discuss two decomposition
strategies. The first strategy has been broadly applied in
many conventional parallel visualization systems, especially
for volume rendering. In this strategy, every data set is
evenly partitioned into m equal-size block-shape chunks,
where the number of data chunks, m, is equal to the
number of rendering nodes, n. By simply distributing all
the rendering tasks to all the rendering nodes, we can easily
achieve balanced rendering workload and maximize system
utilization without using any advanced job scheduling meth-
ods. However, using all the rendering nodes to process one
rendering job at a time might be inefficient because of the
unnecessary transmission overheads over the network. And
due to the limited graphics memory on a GPU, the size of
a data chunk must not exceed the size of graphics memory,
and thus the maximal data size of the system is limited.

In order to more efficiently utilize data locality and
provide high system scalability, we exploit a data decom-
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Figure 3. The illustration of our cost model. Different colors represent
rendering jobs from different user actions. Jobs within a scheduling cycle
are processed together to maximize the system utilization. Latency is the
time between the job initial time and job finish time of a job. And Framerate
is computed from successive job finish times of a user action.

position strategy which divides the data into m chunks,
m = [Dsize/Chkmaz |, where Dyg;.. is the data size and
Chkypqy, determines the maximal chunk size. In this way,
a data set is partitioned into a minimal number of chunks,
where the size of each chunk is less than or equal to the
maximal chunk size. By allowing more than one chunk
assigned to the same rendering node, the system can poten-
tially support an infinite size of data. Chk,,,, should not
exceed the graphics memory of a rendering node. Chk,,qx
should not be too small either because a small chunk size
results in more chunks and transmission overheads. In our
experiments, a moderate chunk size slightly less than the
graphics memory usually results in satisfactory performance.

IV. CoST MODEL AND OBJECTIVE

Based on our design in Section III, the system contains
one head node and a set of rendering nodes ¢, where
|p| = p. All the rendering nodes (Rj,k = 1 ~ p) are
interconnected together. The head node has a job queue
consisting of a collection of independent rendering jobs
Q = {/1,J2,Js,...} that are dynamically pushed into the
system and executed in parallel. Each job is associated with
a dataset that can be decomposed into m chunks. We split
the rendering job J; into m tasks {7} j,j = 1 ~ m}, where
each task is responsible for one chunk. Here we define a cost
model to measure the performance of the parallel rendering,
and quantify the efficiency of job scheduling methods.

Definition 1. Define 7'S(i, j, k) to be the task start time of
the task T3 ; running on the rendering node I?;. The task
execution time T'Exec(i, j, k) of the task T; ; allocated to
the node Ry can be expressed as follows:

TE.’E@C(Lj, k) = tio + trender + tcomposite

where ti,, trender, and teomposite are times for 1/0 load,
rendering, and image compositing, respectively. Since the



I/0 time dominates the overall cost of the rendering process,
the task execution time can be simplified as:

TExec(i,j, k) = tip + a,

where « is a constant that is much less than ¢;,. Notice
that the I/O time can be omitted if the data chunk is
already loaded in the main memory of the rendering node.
The task finish time TF(i,j,k) is the time when the
node Ry, finishes the rendering task 7; ;, and is defined as
TF(i,j,k) =TS(i,4,k) + TExec(i, j, k).

Definition 2. On completing execution, a task waits at a
join point for sibling tasks in the same render group G to
complete the whole execution. The job start time .J.S(i) and
job finish time J F'(4) of the job J; are defined as the minimal
TS(i,j, k) and the maximal TF(i,j, k) associated to .J;,
respectively. The job execution time can then be expressed
as JExec(i) = JF(i) — JS(4)

Definition 3. Define JI(i) to be the job initial time of the
job J;, i.e., JI(7) is the time when J; is being issued and
queued). The job latency Latency(i) of the job J; is then
defined as:

Latency(i) = JF (i) — JI(i)

The latency represents the actual delay that can be noticed
at the user’s end. A long latency can be due to long job
execution time, e.g. a job that requires to load data chunks
from I/O. As a result, utilizing cache locality to minimize
I/O overhead can tremendously decrease the latency. Long
latencies can also happen in a busy system in which it can
take time for a queued job to start being processed if the
system still works on other prior jobs. In such a case, load
balance is especially important so as to fully utilize the
computing capacity of the cluster.

Definition 4. Given a set of interactive jobs J; = {J;,i =
1 ~ n} which correspond to a sequence of continuous user
interactions, the frame rate for this job set is given by:

Framerate(Jy) = (n—1)/ (Z::ll JE@G+1) — JF(@))

In our rendering service, interactive jobs associate with user
actions from interactive visualization sessions, and the frame
rates directly affect the user’s experience and are usually
used to assess the system’s capability for handling interactive
jobs.

In Fig. 3, we use a simple example to illustrate our cost
model. In order to handle a large amount of rendering re-
quests from multiple users and maintain the interactivity for
large volumetric data visualization, an efficient scheduling
method should be able to minimize the job latencies, and
maximize the framerates and system throughput.
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V. SCHEDULING ALGORITHM

Job scheduling for multiple machines, also known as the
job shop scheduling problem, is an NP-complete problem.
The exact solutions demand considerable computational
power and time. In our study, a cluster has p rendering nodes
and a job queue contains a total of N jobs where each job
J; is further divided into ¢; independent tasks based on data
decomposition. Given such a configuration, the number of
ways that we can assign ¢; tasks within the job J; to p
rendering nodes is p'¢. Thus, the total number of mappings
we can have for all the jobs is Hf;l(pti). Furthermore,
N jobs have the factorial N! different permutations for
execution. Omitting the permutations of the tasks that are
parts of the same job and are assigned to the same rendering
node, the total number of combinations is N! - Hf\il(pt)
Hence it is prohibitive to perform such costly scheduling
calculations in a multi-user parallel visualization system
which is designed to provide interactive rendering services.

A. The Proposed Method

Instead of evaluating all the possible combinations to
obtain an optimal scheduling solution, our method detects
and traces the cache locality and the node availability in the
system, and uses a heuristic method to perform scheduling
by searching for a near optimal solution in a much reduced
space. In order to trace the system status, the head node
maintains three tables. The first table is a cached-data table
that records the information of the data chunks resident
in the main memory of each rendering node. The second
table is an available-time table that records a predicted
available time of each rendering node based on its current
and scheduled workload. The third table is an estimated I/O-
cost table that records the latest I/O time for each data chunk.
These three tables are updated periodically by the head node
at run time.

Unlike conventional job scheduling algorithms such as
FIFO or SF, which immediately perform scheduling once a
job enters the queue or the number of queued jobs reaches
a scheduling window size, our method periodically perform
scheduling in a constant short period of time to ensure the
responsiveness for interactive user actions. The search space
can be reduced based on the following heuristics:

o Tasks associated with a rendering job will be first
decomposed and then scheduled individually.
Interactive jobs within a scheduling cycle should be
immediately scheduled, whereas batch jobs can be held
until a rendering node becomes available.

Interactive tasks that use the same data chunk within a
scheduling cycle will be ideally scheduled to the same
rendering node.

A batch task that needs to reload the data chunk from
the disk on a rendering node can be scheduled only if
no interactive tasks have been assigned to this rendering
node for a certain amount of time.



Table I
PARAMETERS USED IN OUR ALGORITHM

w Scheduling cycle
J; A rendering job
T A task associated with J;
t; Number of tasks within J;
c A data chunk
© A set of rendering nodes
Ry, A rendering node

€ Idle time threshold for interactive tasks
Available[ Ry Predicted available time of node Ry
Cachelc A set of nodes which contain caches of c
FEstimate Estimated execution time of a task using ¢

q

Although most conventional methods perform scheduling
on a job basis, our method decomposes a job into a number
of tasks first and independently schedules individual tasks to
optimize load balance and maximize data reuse. In order to
ensure low response time for user actions, interactive jobs
within a scheduling cycle need to be immediately scheduled.
Batch jobs that enter the system are first held and would not
be scheduled until a rendering node becomes available after
processing interactive tasks.

We carefully choose the scheduling cycle w so that inter-
active jobs can be scheduled timely with minimal scheduling
overhead. With a proper w configuration, the number of in-
teractive jobs within a scheduling cycle should be controlled
in a reasonable number. As a result, it is fair to assign all
the tasks that use the same data chunks within the same
scheduling cycle to the same rendering node. Then if more
rendering jobs that use the same data are coming, the system
can pick other rendering nodes in the following scheduling
cycles to distribute the workload.

In our system, serving interactive rendering requests has
the top priority, and the batch jobs are handled only when
there are still rendering nodes available after all the in-
teractive tasks being scheduled. For the batch tasks whose
associated data chunks are cached on a particular node, the
tasks are scheduled to the node until the predicted available
time of the node exceeds the next scheduling time. For those
tasks which require disk I/O to fetch data chunks, we use
an idle time threshold e to determine if a rendering node
has processed an interactive task in recent past. Since disk
I/O time is usually much longer than a scheduling cycle,
such tasks should only be scheduled when the node has
no interactive requests for a while. So the threshold can be
defined as ¢ = FEstimate[c]/2, where Estimate[c] is the
estimated execution time of a task that uses the data chunk
c. The pseudo code of our scheduling method is shown in
Algorithm 1, in which the procedure Schedule(Q ;) is carried
out every w period of time, and Table I summarizes the
notations used in the algorithm.

B. Tables Update and Correction

The system keeps updating the three tables Awvailable,
Cache, and Estimate at run time. The Awailable table
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Algorithm 1 Schedule(an incoming job queue @) ;)
Ensure: a scheduled task queue Qr
I: A < current time +w # next scheduling time
2: Hile — Q] # a hash table that maps chunks to sub
task queues for interactive tasks
3: Hplc — Qp] # a hash table that maps chunks to sub
task queues for batch tasks
: for all J; € Q7 do
decompose J; into T; ;, j =1 ~ t;
push T; ; into H[c] or Hplc| based on the job types
: end for
# scheduling interactive tasks
8: divide Hr into H cachea if Cachelc] # @,
and HI,Non-Cached if CCLCh@[C] =
. sort H Non-Cached based on Estimate]c]
: for all c € HI,Cached U HI,Nun—Cached do
n < ming, Available[Ry] + Estimate[c]

12 assign all T; ; in Hy«[c] to n

13:  update Available[Ry]

14:  update Cache[c] if ¢ € Hr Non-Cached
15: end for

# scheduling cached batch tasks

16: for all Ry € ¢ do

172 Qgr, < VT, ; € Hp if Ry, € Cachelc]

18:  while Available[R;] < X and Qp, # @ do
19: pop a 7T; ; from g, and assign it to Ry
20: update Available]Ry]

21:  end while

22: end for

# scheduling non-cached batch tasks

23: sort Hp based on # of nodes in Cachelc]

24: for all Ry, € ¢ do

25:  while Available[Ry] < A and Hp # & do

26: if idle time for interactive tasks on Ry > ¢ then
27: pop a T; ; from Hp and assign it to Ry,

28: update Available[Ry] and Cache[c]

29: end if

30:  end while

31: end for

records the predicted available time of each node and
is updated every time a task is scheduled. The available
time is later corrected when a task is complete and the
prediction time differs from the actual time. The C'ache table
contains the caching information for each data chunk over
the rendering nodes. The C'ache table on the head node is
updated in the scheduling process when any of the rendering
nodes is scheduled to load a new data chunk from I/O or to
eliminate a cached chunk from the memory. Note that every
rendering node has a system memory limit, and if a new
chunk needs to be loaded but the available memory reaches
its limit, the least recently used caches are released. To



perform prediction, we use the Estimate table to evaluate
task execution time. The Estimate table is initialized via
a test run and updated at run time to the latest I/O time of
data chunks to reflect the state of the system.

C. Implementation

We implement our parallel visualization system in a sort-
last fashion and use MPI for communication. The ray casting
algorithm is implemented using OpenGL shading language
on GPU [6]. The 2-3 swap method [13] is used in our system
for parallel image composting. Similar to the work of Cavin
et al. [30], we use three concurrent threads running on each
rendering node: the rendering thread (responsible for ray
casting on GPU), the compositing thread (responsible for
parallel image compositing), and the communication thread
(responsible for the communication with the head node).
The head node periodically comminutes with the rendering
nodes through MPI nonblocking function calls.

VI. RESULTS AND DISCUSSION

A. System Specifications

We have tested our job scheduling algorithm on two
heterogeneous systems with different configurations. The
first system is an 8-node Linux cluster. Each node has one
quad-core 3.0GHZ Intel Core 2 processor with 4 GB of
memory, and one nVidia GeForce GTX 285 GPU. The
second system is a 100-node GPU cluster at Argonne
National Laboratory (ANL). Each node contains two quad-
core 2.0GHZ Intel Xeon processors with 32 GB of memory,
and two nVidia Quadro FX5600 GPUs. These two systems
are representative visualization machines. In the past, they
are typically employed to perform batch processing for huge
volume data analysis and rendering.

B. Experiment Design

In our experimental study, we use simulation as the means
for the performance evaluation of our proposed scheme. We
design four scenarios that simulate real multi-user environ-
ments with mixed interactive and batch rendering requests
to validate the effectiveness of our method in workload
balancing and cache reusing. To evaluate the performance,
we calculate the latency of every processed job, and for each
series of user actions, we analyze the difference between the
resulting framerate and its corresponding target value.
Scenario 1: We use 8 nodes in the first system. The memory
quota of each node is constrained to 2GB, and thus there
is 16GB of available memory in total. We use 6 datasets
and the size of each one is 2GB, resulting in 12GB data in
total. The maximal chunk size C'hk,,.. is set to 512MB so
that each rendering job yields 4 corresponding tasks. Since
total data are smaller than total memory and thus can be
completely cached, the purpose of this test is to measure
the capability of workload balancing of a scheduling scheme.
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Table 1T

FOUR DIFFERENT SCENARIOS IN OUR EXPERIMENT

scenario # of nodes total memory | # of datasets total size
1 8 16 GB 6 12 GB
2 8 16 GB 12 24 GB
3 64 512 GB 32 256 GB
4 64 512 GB 128 1 TB
scenario | total length # of # of inter- target
batch jobs active jobs framerate
1 60s 0 12006
2 120s 2251 21011
3 300s 9844 160633 33.33 fps
4 600s 35176 388481

The target framerate of all the four scenarios is set to 33.33
fps (one request per 30ms for each action).

Scenario 2: Following Scenario 1, but we double the number
of datasets and place additional batch jobs and interactive
actions. The test is to verify the utilization of data locality.
Scenario 3: We use 64 nodes in the second system. The
memory quota of each node is constrained to 8GB, and thus
there is 512GB of available memory in total. We use 32
datasets and the size of each one is 8 GB, resulting in 256GB
data in total. The maximal chunk size Chk,,,, is set to
512MB so that each rendering job yields 16 corresponding
tasks. The scenario simulates a light-load environment in a
large-scale GPU cluster for interactive services.

Scenario 4: Following Scenario 3, this test uses 128 datasets
with a total size of 1TB to simulate a heavy-load environ-
ment with numerous batch jobs and user actions.

The configurations of the four scenarios and the other
profiling details are summarized in Table II. For comparison,
we select the following five widely-used job scheduling
policies, and modify them moderately for our application.

o First-Come-First-Serve (FCFS): This policy schedules
jobs in the order of their arrival time in the job queue.
This policy also maintains an available-time table and
applies the greedy strategy to assign tasks to nodes with
the smallest values of available time.

o First-Come-First-Serve with data locality (FCFSL):
This policy follows the similar strategy as FCFS, but
it takes data locality into account in its greedy search.

o First-Come-First-Serve with a uniform data partition
and distribution (FCFSU): This policy follows the same
scheduling scheme as FCFS, but instead of partitioning
data based on Chk,, ., it uniformly partitions a dataset
and distributs the associated tasks to all the nodes.

o Shortest-First (SF): This policy sorts the jobs within a
certain batch window based on the estimated execution
time and schedules the jobs using the greedy strategy.

o Fair-Sharing (FS): This policy allocates available com-
putational resources to jobs based on estimated execu-
tion time such that each job gets an equal share of the
resources on average over time. This method allows
for certain levels of interactivity and is used by many
distributed computing platforms such as Hadoop [26].
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C. Results
Scenario 1 simulates six simultaneous user actions that 100
periodically request rendering for six different datasets in s
a framerate of 33.33 fps on an 8-node Linux cluster. Fig. 4 2 - °
shows the resulting framerates (bar charts) and latencies FS SE FCFS FCFSU FCFSL OURS

(marked lines) from the benchmarks of the six scheduling
schemes. FS, SF, and FCFS, the methods which do not
take data locality into consideration, frequently fetch data
from the disk and result in poor framerates at less than
1 fps and long latencies. FCFSU uniformly distributes the
rendering jobs and can achieve perfect data reuse because all
the data can be cached in this test. However, since FCFSU
partitions a dataset into twice the number of chunks than in
other approaches, it also consumes twice as many computing
resources for each single job and can only achieve nearly
half of the target framerate. OURS and FCFSL dynami-
cally allocate the tasks based on data locality and system
workload, and have the best performance in both framer-
ates and latencies. But FCFSL carries out the scheduling
procedure on an every-job basis and thus produces slightly
higher scheduling overhead than OURS in this test. With no
batch jobs involved, this experiment shows that OURS can
facilitate the interactive performance.

Scenario 2 simulates many short user actions mixed with
a number of batch jobs. As shown in Fig. 5, FS, SF, and
FCFS again result in poor interactive performance and have
very high latencies for batch jobs. Since the total data size
used in this test is larger than the system memory capacity,
for FCFSU and FCFSL, data swapping is then required
when a batch job with a different associated dataset is issued
and needs to be immediately scheduled. In such a case, the
interactive actions are then interrupted and require additional
data swaps to resume the rendering tasks. As a result, the
framerates for both FCFSU and FCFSL drop below half
of the target value, and the latencies of interactive jobs
tremendously increase. OURS, which utilizes the proposed
heuristics, defers batch jobs while still handling interactive
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Figure 5. Scenario 2: This 120-second test simulates many short interactive
user actions and a number of batch requests on an 8-node Linux cluster.
The top graph illustrates the resulting interactive framerates and latencies
of the six scheduling schemes. The bottom graph shows the latency (left
bar) and the average working time (right bar) of each scheduling scheme
for batch jobs. Although our method trades the batch throughput for a
better interactive framerate, the result shows that by minimizing the total
execution time, OURS can achieve the lowest batch job latency.

jobs and thus is able to maintain an acceptable framerate.
In the bottom chart Fig. 5, the left and right bars of each
schedule scheme show the average latencies and working
time for batch jobs (shorter working time indicates higher
throughput for batch jobs), respectively. Note that OURS has
slightly higher average working time than FCFSL because
OURS trades the batch throughput for a better interactive
framerate. But by minimizing the total execution time,
OURS still achieves the lowest batch job latency.

Scenario 3 and 4 use 64 rendering nodes on the GPU
cluster at ANL. In such a system, FCFSU results in a
considerable redundant processing overhead as the number
of nodes increases. In Scenario 3, in which data can be fully
cached, FCFSU only obtains 11.25 fps, whereas OURS can
reach an almost-optimum framerate of 32.80 fps as shown
in Fig. 6. And by deferring batch jobs, OURS can achieve
the lowest latency of less than 1s for interactive jobs. The
interactive framerate and latency of FCFSL are still affected
by the interruption of batch jobs, although it has notably
better performance on batch requests.

Scenario 4 simulates a heavy-load environment by creating a
large number of rendering jobs from both interactive actions
and batch requests. A total of 1TB data are accessed by 64
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Figure 6. Scenario 3: This test uses 64 computing nodes on a 100-node
GPU cluster at ANL to simulate a hybrid environment of interactive and
batch requests on a large-scale cluster. The top graph illustrates the resulting
interactive framerates and latencies of the six scheduling schemes. The
bottom graph shows the batch latency (left bar) and the average working
time (right bar). The result shows that by utilizing the proposed heuristics,
which defers batch jobs, OURS achieves the lowest latency of less than Is,
and an almost-optimum framerate of 32.80 fps for interactive jobs.

rendering nodes in this test. FCFSL again suffers from a
large amount of data swaps as in Scenario 2 and has a ten
times longer interactive latency than OURS. Note that the
latency of OURS soars up to 27.767s in this test because
rendering jobs are unceasingly pushed into the system during
this 10-minute simulation. But in a real scenario, users
usually do not continuously make actions and would stop the
interactions when they sense a lag. But even in this heavy-
load simulation, OURS can still achieve 22.98 fps throughput
for interactive rendering, which is 167.2% performance
gain from FCFSL and 190.9% from FCFSU. The resulting
framerates and the latencies are illustrated in Fig. 7.

Table IIT
DATA REUSE HIT RATES AND AVERAGE SCHEDULING COSTS
scenario FS FCFSU | FCFSL | OURS
1 hit rate 8.01% | 99.95% | 99.94% | 99.94%
avg. cost (us) 32 60 65 33
5 hit rate 28.63% | 99.86% | 99.72% | 99.91%
avg. cost (us) 36 72 74 53
3 hit rate 12.19% | 99.97% | 99.74% | 99.91%
avg. cost (us) 677 2019 1002 1446
4 hit rate 10.67% | 99.86% | 99.51% | 99.76%
avg. cost (us) 680 3459 1078 1392
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Figure 7. Scenario 4: This test simulates a heavy-load hybrid environment
using 64 nodes on the GPU cluster at ANL. A total of 1TB data are
requested by 423,657 rendering jobs in this 10-minute simulation. The top
graph illustrates the resulting interactive framerates and latencies of the six
scheduling schemes. The bottom graph shows the latency (left bar) and the
average working time (right bar) of each scheduling scheme for batch jobs.
The result shows that our method can achieve a high interactive framerate
close to the target value, while maintaining a reasonable batch throughput.

D. Scheduling Costs and Performance

Table III shows the data reuse rates and the scheduling
costs of the four schemes in each scenario. OURS and
FCFSU can achieve a nearly perfect hit rate in all scenarios.
FCFSL has a slightly lower hit rate in every case due to
the data swapping between interactive and batch jobs. Other
methods such as FS have low data reuse percentages. Note
that even 0.1% of difference in the hit rates causes huge
impact on the system performance because the I/O time
is usually hundreds orders of magnitude larger than the
rendering time. The avg. costs listed in the table represent
the average time for scheduling a single job, and OURS
has a much lower value compared to FCFSU. All the First-
Come-First-Serve schemes schedule one job at a time, and
the costs are independent of the number of user actions but
linearly proportional to the size of the cluster. OURS and FS
apply a constant scheduling cycle and can more efficiently
process multiple jobs. Fig. 8 shows the comparison of the
number of user actions to the scheduling costs between
OURS, FCFSL, and FCFSU. We can see that, compared
to the other methods, OURS can generally maintain a high
hit rate while requiring a low scheduling cost to support
multiple simultaneous user actions.
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However, when increasing the number and size of
datasets, OURS requires a longer scheduling time due to
the pre-processing for categorizing tasks by chunks. The
complexity of our algorithm is O(p x mlog(m)), where p
is the number of nodes and m is the total number of data
chunks. Such pre-processing is worthwhile because, first of
all, the scheduling time is typically five to ten times shorter
than the rendering time so such an overhead is negligible.
Most importantly, the benefit gained by conducting the
scheduling is so great, as shown in Fig. 9, that OURS can
achieve the best overall performance to satisfy the target
requirements.

Our scheduling method has a certain degree of fault
tolerance when some of the nodes crash. By dynamically
updating the E'stimate table to identify those unavailable
nodes, the rendering can still carry on as long as the system
has copies of the required data chunks on other rendering
nodes. Such characteristics make our method also compat-
ible with the distributed file systems in cloud computing.
With our job scheduling scheme, multiple users are allowed
to simultaneously render high resolution data at interactive
or nearly interactive framerates. Fig. 10 shows three render-
ing examples generated by our parallel visualization system.
It can be seen that our parallel visualization solution enables
scientists to study fine details in large-scale data.

VII. CONCLUSION AND FUTURE WORK

We have developed a new job scheduling method for
interactive visualization of large volumetric data with multi-
user support. We characterize the problem of scheduling
rendering jobs on heterogeneous systems and effectively
reduce the problem space, leading to a scheduling design
with a much lower complexity. Our test results show that
our method can schedule a large amount of jobs at inter-
active framerates while achieving an optimal solution for
data locality and keeping the I/O overhead to a minimum.
Our method obtains a well-balanced workload among the
processors, giving us a highly scalable solution.
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Figure 9. The comparison of the number of datasets in use to the

scheduling costs and performance. As shown in the top graph, due to
the pre-processing for categorizing incoming jobs by the associated data
chunks, the scheduling cost of our method increases as more datasets are
in use; however, this cost is negligible because it is typically two to three
orders of magnitude smaller than the rendering time. In addition, OURS
can maintain a stable interactive framerate (the middle graph) and low
latency (the bottom graph) even when total data exceed the system memory
capacity. The test is run on 16 nodes on the GPU cluster at ANL, and uses
the datasets (8GB per dataset) with mixed interactive and batch jobs.

While this paper presents our study of job scheduling
specific for the target application of parallel volume ren-
dering, the job scheduling requirements and challenges are
representative. Therefore, our design principle and schedul-
ing scheme can be generally applicable to a wider class of
interactive applications on large heterogeneous systems.

We have shown that with a set of simple heuristics, our
scheduling design helps not only reduce scheduling cost but
also achieve good data locality. Apart from the dominating
I/0 cost, we would also like to consider the associated
computation and communication cost of parallel jobs in
our future designs. Moreover, we will develop methods to
minimize the data transfer between main memory and video
memory and to fully exploit high levels of concurrency
powered by heterogeneous systems.



Figure 10. Three example images generated by our parallel visualization
system. Top Left: rendering of a plume simulation dataset (data dimension:
252 x 252 x 1024), Bottom Left: rendering of a combustion simulation
dataset (data dimension: 2025 x 1600 x 400), Right: rendering of a
supernova simultion dataset (data dimension: 864 x 864 x 864).
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